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We provide a methodology for generating interatomic potentials for use in classical molecular-dynamics
simulations of atomistic phenomena occurring at energy scales ranging from lattice vibrations to crystal defects
to high-energy collisions. A rigorous method to objectively determine the shape of an interatomic potential
over all length scales is introduced by building upon a charged-ion generalization of the well-known Ziegler-
Biersack-Littmark universal potential that provides the short- and long-range limiting behavior of the potential.
At intermediate ranges the potential is smoothly adjusted by fitting to ab initio data. Our formalism provides
a complete description of the interatomic potentials that can be used at any energy scale, and thus, eliminates
the inherent ambiguity of splining different potentials generated to study different kinds of atomic-materials
behavior. We exemplify the method by developing rigid-ion potentials for uranium dioxide interactions under
conditions ranging from thermodynamic equilibrium to very high atomic-energy collisions relevant for fission
events.

DOI: 10.1103/PhysRevB.80.174302 PACS number�s�: 31.15.es, 34.20.Cf, 61.82.Ms

Molecular dynamics �MD� simulations provide a conve-
nient tool for studying the dynamics of large atomic en-
sembles, provided that the dynamics of interest is not of a
duration that makes the simulation time impractical. There
are many examples of beautiful applications of how MD has
been able to provide detailed insight into the dynamics and
statistics of materials behavior. One contemporary interest is
the field of high-energy radiation damage in crystalline ma-
terials, such as nuclear fuel. A core material of interest in this
context is uranium dioxide and one of the important aspects
of the interest in this material is to understand the evolution
and statistics of atomic displacement cascades due to high-
energy radiation.1 Classical molecular dynamics is ideally
suited for this kind of study since it strikes a fine balance
between being coarse enough to simulate the spatial scale
necessary to represent the extent of a damage cascade due to,
e.g., a 100 MeV atomic collision with being detailed enough
to retain the atomic structure of the material. The high-
energy range of the potential �short range in atomic separa-
tion� is consistent with the well-accepted Ziegler-Biersack-
Littmark �ZBL� universal-pair potentials,2 which treat close-
range atomic interactions as screened Coulomb forces
between the nuclei. However, the complexity of the true in-
teratomic interactions cannot be fully represented in an effi-
cient manner by a simple classical functional form. Thus,
one needs to develop a set of essential interaction features
that are necessary for a given application. This is a particu-
larly challenging exercise for radiation damage simulations
due to the disparate scales of energies involved. Therefore,
interatomic potentials, suitable for this purpose, are typically
constructed by smoothly joining different types of interac-
tions. At medium to long-range distances, a traditional po-
tential �e.g., Buckingham, electrostatic, etc.� fitted to a vari-
ety of thermodynamic and structural data is used. At short-
ranges, accurate potentials are developed by fitting to ab

initio �AI� data. The ZBL universal potential is one such very
popular pair potential developed by Ziegler et al.2 in the
1980s as a generic function of the atomic numbers of the
species involved. Although each type of interaction is di-
rectly determined through fitting, the determination of a suit-
able spline that smoothly joins these two pieces is a highly
nonunique process. Splining leads to an inherent ambiguity
in the behavior of the complete potential since the exact cut-
off distances and the spline’s algebraic form will have con-
sequences for how large the “cores” of the atomic interac-
tions are and how the potential behaves in the region of
transition. This, in turn, will have a significant impact on the
ion trajectory and damage production one is ultimately inter-
ested in. Such ambiguity is illustrated in Fig. 1. Of course, a
complete description of the dynamics of the system will also
require the inclusion of a suitable electronic stopping
model.2–7

In the present paper we introduce a rigorous method to
unambiguously determine the form of the potential over all
distances using ab initio data. Although our approach is ap-
plicable to any material system, we illustrate it using the
important example of the nuclear fuel UO2, which has been
the focus of several detailed computational investigations,
both through ab initio8 and MD �Refs. 9–11� methods, due to
its critical importance in the nuclear industry.

Our approach is to first generalize the universal ZBL po-
tential to include charged ions that behaves correctly in both
short-range and long-range limits. The advantage of building
upon the ZBL formalism is that our potential automatically
inherits the well-tested ability of the ZBL potential to de-
scribe high-energy scattering phenomena associated with the
short-range behavior of the potential. This generalized poten-
tial smoothly interpolates between these two regimes over a
physically motivated length scale that is based on atomic-
orbital sizes instead of necessitating a user-specified transi-
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tion radius for the electrostatic interactions at short ranges to
prevent double counting. The only component that remains
to be determined by fitting is then the medium-range energy
contribution associated with chemical bonding. As this con-
tribution is only significant over a relatively small range of
distances it is possible to introduce lower and upper cutoffs,
where this contribution must smoothly vanish. Importantly,
these physically motivated cutoffs can be fitted to ab initio
data and are therefore no longer arbitrary; unlike in the cur-
rent practice.

The ZBL potential,2 which properly accounts for the
screening of nuclear charge by the electronic clouds as a
function of interatomic distances, is built on considering two
interacting spherically symmetric rigid electron clouds. In
this spirit, we also consider two interacting spherically sym-
metric rigid electron clouds with electron densities deter-
mined ab initio and fitted to a sum of Slater functions.12 This
approximation is valid beyond distances where electron
clouds overlap and chemical bonds form. For short distances
�i.e., distances less than chemical-bond lengths� we obtain
the energy as a function of distance between any two atoms

through first-order perturbation theory. It was demonstrated
by Ziegler et al.2 that more sophisticated self-consistent field
calculations incorporating the distortion of electronic clouds
did not lead to any significant differences in the resulting
interatomic potential at short distances. Thus, since we em-
ploy the same electronic density and the same screening
function �ratio of the actual atomic potential at some radius
to the potential caused by an unscreened nucleus� as used by
Ziegler et al., we recover the ZBL potential at these short
distances, as we will show later.

We consider two spherically symmetric charge densities
per unit volume �1�r� and �2�r�, with central point charges of
Z1e and Z2e, respectively, �1�r� and �2�r� being normalized
to equal �Z1+q1�e and �Z2+q2�e, respectively. We further
think of the point charge Z1e as being made of two point
charges, �Z1+q1�e and �−q1�e; Z2e is similarly decomposed
into �Z2+q2�e and �−q2�e. q1e and q2e here denote the net
ionic charges on atoms 1 and 2, respectively. We make this
decomposition so that the Coulombic interaction term natu-
rally arises in the expression for the net interaction potential
V�r�

V�r� = ZBLZ1+q1,Z2+q2
�r� +

q1q2e2

4��0r
+ t1 + t2, �1�

where ZBLZ1+q1,Z2+q2
�r� denotes the ZBL form of interaction

between two neutral atoms having atomic numbers Z1+q1
and Z2+q2 but using the screening length for Z1 and Z2. This
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FIG. 2. �Color online� Charge-density times 4�r2 fitted to sum
of Slater functions for �a� oxygen and �b� uranium. Open circles
denote values used by Ziegler et al. �Ref. 2� while the solid lines
indicate our fit using sum of Slater functions. The resultant error in
the short-range interatomic potential as compared to ZBL’s original
potential was well within the latter’s standard deviation for both �a�
and �b�. Thus trying to capture more peaks for uranium, by intro-
ducing more Slater functions, was not necessary. The coefficients
used here are provided in Table I.
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FIG. 1. �Color online� �a� ZBL screened potential �solid line�
and Morelon et al. potential �dashes�, joined together by a fifth-
order polynomial �plus signs�, for the case of two oxygen atoms. �b�
First derivative of the net potential resulting from the same. �c�
Second derivative of the potential. Since the spline was not fit to
any data, one cannot decide whether the resulting behavior in �b�
and �c� is correct or spurious.
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is because the screening length is governed by the electronic-
charge distribution close to the nucleus and not far away
from it. Since the extra charges q1 and q2 have been added to
the valence shells of neutral atoms with atomic numbers Z1
and Z2, we do not change the screening length. This was
found critical in recovering the standard short-range ZBL
potential. t1 denotes the interaction between the point charge
−q1e and the �Z2+q2�e point charge plus electron-cloud sys-
tem of the atom 2, and is given by

t1�r� =
− q1e2

4��0
�Z2 + q2

r
−

1

r
�

0

r

4�s2�2�s�ds

− �
r

�

4�s�2�s�ds� �2�

while t2 is the converse remaining point-atom interaction,
expressed similarly. Equation �1� is correct for atomic sepa-
rations smaller than the “chemical bond length” �where it
recovers the original neutral atom ZBL� and for very large
atomic separations as well. In the latter case, only the second
term in Eq. �1� survives as we show below.

The task now is the determination of �O�r� and �U�r�. It is
here important to notice that the potential for very small

interatomic separations is only as good as the ZBL form �see
Eq. �1��. Thus, we use the charge densities employed for
ZBL, which are primarily Hartree-Fock-Slater atomic distri-
butions for most of the atomic pairs. We fit the numerical
data for charge density used by Ziegler et al. to a sum of
Slater functions. While the density ��r� is known to be a
monotonic decreasing function of radial distance for all at-
oms, the graph of 4�r2��r� exhibits a number of peaks �see
Fig. 2� corresponding to atomic shells. To ensure the best
possible accuracy, we fit to 4�r2��r� because this is the
quantity entering Eq. �1�. We find that 2 and 4 Slater func-
tions are sufficient to capture the behavior of 4�r2��r� for
neutral oxygen and uranium atoms �see Fig. 2�, i.e.,

�O�r� = a1e−k1r + a2re−k2r, �3�

TABLE I. Values of coefficients in Slater functions in Eqs. �3� and �4�.

a1=2799.625e Å−3 a2=211.038e Å−4 k1=30.76 Å−1

k2=6.77 Å−1 b1=3092188.94e Å−3 b2=13255095.09e Å−4

b3=4982192.00e Å−5 b4=135624.70e Å−6 l1=309.92 Å−1

l2=87.23 Å−1 l3=32.98 Å−1 l4=13.80 Å−1
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FIG. 3. �Color online� Comparison of our analytical potential
form �dashed line� with �a� the currently used neutral atom ZBL
interaction �solid line� for small distances and �b� the ionic coulom-
bic interaction �solid line� between two �−2e� point charges for
large distances for the case of two oxygen atoms.
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FIG. 4. �Color online� �a� The interatomic potential for oxygen-
oxygen as per current work �Eq. �10��. �b� First derivative of the net
potential resulting from the same. �c� Second derivative of the po-
tential. These are to be compared with Fig. 1.
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�U�r� = b1e−l1r + b2re−l2r + b3r2e−l3r + b4r3e−l4r. �4�

Fitting the ZBL charge density with Slater functions does not
exactly ensure that the areas under the 4�r2��r� curves for
oxygen and uranium are 8 and 92, respectively. The Slater
function fits therefore needed a slight modification in their
prefactors. In addition, the prefactors in the above two equa-
tions as reported in Table I have been multiplied by 10/8 for
oxygen and 88/92 for uranium because we are interested in
the electronic cloud of the ionic species and not of the neu-
tral atoms. We also experimented with more sophisticated
corrections �e.g., using noble-gas densities instead� but this
did not change the results by more than the intrinsic accuracy
of the ZBL potential. By using Eqs. �3� and �4� in Eq. �1� and
performing the integrations, we obtain the following pair po-
tentials for oxygen-oxygen, uranium-uranium, and oxygen-
uranium, respectively:

VOO�r� = ZBL10,10�r� +
�− 2��− 2�e2

4��0r
−

4e2

4��0
�10

r

−
4�

e
fOO�r�� , �5�

VUU�r� = ZBL88,88�r� +
�4��4�e2

4��0r
+

8e2

4��0
�88

r
−

4�

e
fUU�r�� ,

�6�

VOU�r� = ZBL88,10�r� +
�4��− 2�e2

4��0r
−

2e2

4��0
�88

r
−

4�

e
fUU�r��

+
4e2

4��0
�10

r
−

4�

e
fOO�r�� , �7�

where we have

fOO�r� =
6a2

rk2
4 −

a2e−k2r

rk2
4 �6 + 4k2r + k2

2r2� +
a1

rk1
3 �2 − 2e−k1r

− k1re−k1r� , �8�

TABLE II. Comparison of defect formation and migration energies �all in eV�, between our values and
best values as per previous potentials �Ref. 26�, compared with ab initio values from this work and with
experimental values �Refs. 10 and 27�.

�E�,�AI� This work Previous potentials

Oxygen Frenkel pair formation energy 3.5+ /−0.5, 3.9 3.3 3.17

Uranium Frenkel pair formation energy 9.5–12,10.1 15.5 12.6

Schottky trio formation energy 6.5+ /−0.5,7.4 7.1 6.68

Oxygen interstitial migration energy 0.9–1.3,1.5 1.4 0.65

Oxygen vacancy migration energy 0.5,0.9 0.5 0.33

Uranium interstitial migration energy 2.0,1.3 2.3 5.0

Uranium vacancy migration energy 2.5,2.8 2.8 4.5
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FIG. 5. �Color online� Quality of fit from our fitted potential for
various ab initio energies: �a� expansion/contraction �open circles�,
�b� oxygen-atom perturbation �plus signs�, and �c� uranium-atom
perturbation �cross signs�. Asterisks denote ab initio data. For each
of oxygen and uranium, the first four perturbations are along �100	
direction while the second four are along �110	 direction.
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FIG. 6. �Color online� �a� Relative lattice-parameter variation
using potential from current work �open circles� compared with
corresponding experimental values �dashed line� �Ref. 27�. The
scatter in the experimental values is also shown �solid lines�. �b�
Enthalpy variation using potential from current work �open circles�
compared with corresponding experimental values �solid line� �Ref.
27�. The scatter in the experimental values was less than 1% and is
thus not shown.
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fUU�r� =
120b4

rl4
6 −

b4e−l4r

rl4
6 �120 + 96l4r + 36l4

2r2 + 8l4
3r3 + l4

4r4�

+
24b3

rl3
5 −

b3e−l3r

rl3
5 �24 + 18l3r + 6l3

2r2 + l3
3r3� +

6b2

rl2
4

−
b2e−l2r

rl2
4 �6 + 4l2r + l2

2r2� +
b1

rl1
3 �2 − 2e−l1r − l1re−l1r� .

�9�

We illustrate in Fig. 3 how closely the potentials given in
Eqs. �5�–�7� match, for small r, the neutral atom ZBL, and
for large r, the relevant Coulombic interaction. As for any
empirical potential, there is an intermediate distance range
for which the interactions follow neither a ZBL nor a purely
Coulombic form. A correction term is thus needed for this
regime. We find this correction term by fitting to an extensive
database of generalized gradient approximation GGA+U ab
initio calculations on UO2. GGA+U is known to provide
electronic and magnetic behaviors of UO2 that are consistent
with experiments,13 and a correct treatment of the localized
and strongly correlated 5f electrons of uranium.14,15 Our ab
initio calculations also take into account the experimentally
observed noncollinear antiferromagnetic magnetic-moment
ordering and the oxygen cage distortion in UO2.16 Therefore,
in addition to capturing correct elastic and defect properties,
our potential also covers a much more vast energy landscape
in the material due to the richness of the ab initio data used.
We fit to a database obtained by GGA+U calculations with
the projector-augmented-wave method implemented in the
VASP �Ref. 17� package. In the GGA+U approximation, the
spin-polarized GGA potential is supplemented by a Hubbard-
type term to account for the strongly correlated 5f orbitals.18

We use the rotationally invariant approach to GGA+U due
to Dudarev et al.,19 wherein the parameter U-J is set to 3.99
eV. This is the generally accepted value for this parameter to
reproduce the correct band structure for UO2.20 The magnetic

moments were allowed to be fully noncollinear. The ab initio
database so obtained comprises: �i� isochoric relaxed runs on
a 12 atom unit cell which was isometrically contracted and
expanded by various amounts �i.e., equation of state calcula-
tions wherein each data point was calculated under constraint
of constant cell volume� and for which an energy cutoff of
500 eV and a 8�8�8 k-point grid were taken; k-point con-
vergence was ascertained before choosing this value for the
k-point grid. The cell was allowed to relax in shape but not in
size. Ionic relaxations were carried out until residual forces
less than 0.01 eV /Å were achieved. �ii� Static �i.e., no ionic
relaxation� runs on 96 atom 2�2�2 supercell in which one
atom at a time �i.e., oxygen or uranium� was perturbed from
its equilibrium position by varying distances in different di-
rections. Energy cutoff was 500 eV. After performing con-
vergence studies on the k-point grid, gamma point only ver-
sion of VASP was found to be satisfactorily accurate for this.
Note that any interactions between atoms and their periodic
images do not systematically bias the fit of the potential be-
cause the same supercell geometry is used in both the ab
initio and the empirical potential-energy calculations. �iii� 96
atom 2�2�2 supercell for the formation energies of three
kinds of stoichiometric defects, namely, oxygen Frenkel pair,
uranium Frenkel pair, and Schottky trio. The vacancies and
the interstitials were taken as far from each other as the su-
percell would allow. The details of the calculations are the
same as that for case �ii� above. Correct prediction of defect
energies has been given great importance in generating inter-
atomic potentials for cascade simulations. �iv� first-order
transition states in a 2�2�2 supercell for the migration
energy of oxygen and uranium vacancy and interstitial.
Nudged elastic band method21 in conjunction with the climb-
ing image method22,23 for determination of saddle-point en-
ergy, as implemented in VASP, was used for this.

With the ab initio database so generated, we now fit the
final potential forms as follows:

VUU�r� = ZBL88,88�r� +
�4��4�e2

4��0r
+

8e2

4��0
�88

r
−

4�

e
fUU�r�� , �10�

VOO�r� =
�− 2��− 2�e2

4��0r
+
ZBL10,10�r� −

4e2

4��0
�10

r
−

4�

e
fOO�r�� 0 � r � 1.17 Å

fifth order polynomial 1.17 Å � r � 2.28 Å

third order polynomial 2.28 Å � r � 2.84 Å

− 603.268 eV Å6/r6 r � 2.84 Å
� ,

VOU�r� =
�− 2��4�e2

4��0r
+ 
ZBL88,10�r� +

4e2

4��0
�10

r
−

4�

e
fOO�r�� −

2e2

4��0
�88

r
−

4�

e
fUU�r�� 0 � r � 1.42 Å

fifth order polynomial 1.42 Å � r � 1.70 Å

394.391 eV exp�− r/0.534 Å� − 1.5 eV Å6/r6 r � 1.70 Å
� .
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The long-range Coulomb terms in the interaction here were
calculated through the standard Ewald summation technique.
The upper cutoffs for all terms except the Coulombic in Eq.
�10� may be chosen as per the availability of computational
resources. As seen from Eq. �10� we now have absolutely no
splines for the U+4-U+4 interaction, reflecting the fact that no
chemical bonding takes place. There are splines in the other
two interactions but these are now unambiguously deter-
mined since the respective cutoffs are not imposed but in-
stead determined through fitting. The splines maintain conti-
nuity through the second derivatives of the potential and the
specific form of the splines can be uniquely recovered from
these conditions. Since they have been fitted to accurate ab
initio data, these splines do not introduce any spurious
wriggles in the potential. For the interaction between two
oxygen ions, the potential has one �and only one� minimum
at rmin=2.28 Å, as may be seen from Fig. 4. We have thus
minimized the unphysical features of all of the interatomic
potentials in UO2, which were demonstrated for the particu-
lar case of oxygen-oxygen interaction in Fig. 1.

The downhill simplex method of Nelder-Mead was used
to carry out the fitting.24 The fitting involved minimizing the
sum of the squares of the differences between the ab initio
energies and the energies predicted by the potential for all
the classes of data points as detailed above. The package
GULP �Ref. 25� was used for energy calculations and for
atomic-positions optimization. The quality of fit for the equa-
tion of state data and the perturbed atom data can be seen in
Fig. 5. The ab initio/experimental �E� and predicted defect
formation/migration energies are compared in Table II while
Table III lists the predicted ground-state lattice parameter
and other elastic properties as compared with the correspond-
ing experimental values10,27 �extrapolated accordingly� and
with values obtained with the Morelon et al.26 potential. The
agreement is very satisfactory.

As a final validation of the developed potential we con-
sidered various dynamic properties by performing MD simu-
lations in a constant number, pressure and temperature en-
semble comprising 6�6�6 unit cells. The system was
equilibrated for 10.0 ps while production runs were carried

out for 100.0 ps with a time step of 0.001 ps and sampling
every 0.05 ps. The fluorite structure remained stable during
all the runs we performed, up to temperatures of 2500 K. The
properties we considered are the variation in the lattice pa-
rameter and the enthalpy as functions of the temperature.
These are compared in Fig. 6 with the corresponding experi-
mental data.27 The quality is similar to what is given by the
previous potentials26,28,29 as tabulated in the work by More-
lon et al.26

To summarize, we have shown a methodology for devel-
oping an interatomic pair potential such that it is appropriate
for all relevant interatomic separations, without the need for
any ambiguous splines. Splining between regions of different
characteristics is not just an inconvenience in the implemen-
tation of a potential in MD simulations but also introduces an
uncertainty regarding which distances, and by which func-
tions, one realizes the splines. The potential we have focused
on in this presentation, the nuclear fuel UO2, is just one
example of a model material in which very relevant materials
physics depends on accurate and reliable interactions over
many orders of magnitude, and we have obtained the first
complete description that allows for direct simulations of
damage cascades due to high-energy radiation effects. The
potential has been generated based on a slight revision of the
ZBL universal potential to account for ionic materials with
the intermediate interatomic distances fitted to a broad data-
base of ab initio structural energies. In view of these quali-
ties, we expect it to be a very reliable potential for studying
displacement cascades in UO2. Our potentials are available
as a GULP library file.30
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TABLE III. Comparison of various ground-state elastic properties, between our values and best values as
per previous potentials �Ref. 26�, compared with �extrapolated� experimental values �Ref. 27�. Note well that
these are predicted and not fitted values.

Experimental This work Previous potentials

Lattice parameter �Å� 5.46 5.46 5.46

Bulk modulus �GPa� 207 210 125

Elastic constant C11 �GPa� 389.3 401.8 216.9

Elastic constant C12 �GPa� 118.7 114.1 79.1

Elastic constant C44 �GPa� 59.7 107.8 78.5
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